Modulation of Ligand Fluorescence by the Pt(II)/Pt(IV) Redox Couple.

نویسندگان

  • Justin J Wilson
  • Stephen J Lippard
چکیده

The dangling carboxylic acid moiety of the known platinum(II) complex, [Pt(edma)Cl(2)] (edma = ethylenediaminemonoacetic acid), was functionalized via amide coupling chemistry with benzyl amine and dansyl ethylenediamine to afford the derivatives [Pt(edBz)Cl(2)] (1) and [Pt(edDs)Cl(2)] (2). Subsequent oxidation of these platinum(II) complexes with iodobenzene dichloride in DMF yielded the respective platinum(IV) analogues, [Pt(edBz)Cl(4)] (3) and [Pt(edDs)Cl(4)] (4). All four platinum complexes were characterized by multinuclear NMR spectroscopy, IR spectroscopy, electrospray ionization mass spectrometry, and elemental analysis. In addition, compounds 1 and 3 were structurally characterized by X-ray crystallography. The photophysical properties of the compounds bearing the fluorescent dansyl moiety, 2 and 4, were evaluated. The emission quantum yields of 2 and 4 in DMF are 27% and 1.6%, respectively. This large difference in emission efficiency indicates that the platinum(IV) center in 4 is more effective at quenching the dansyl-based fluorescence than the platinum(II) center in 2. Time-dependent density functional theory calculations indicate that 4 has several low-lying singlet excited states that energetically lie below the primary radiation-accessible excited state of the dansyl fluorophore. These low-energy excited states may offer non-radiative decay pathways that lower the overall emission quantum yield. Treatment of 4 with biologically relevant reducing agents in pH 7.4 phosphate-buffered saline induces a 6.3-fold increase in emission intensity. These results demonstrate that 4 and future derivatives thereof may be useful for imaging the reduction of platinum(IV) complexes in living systems, chemistry of importance for future platinum-based anticancer drug strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Platinum-oxygen Bond Formation: Kinetic and Mechanistic Studies

Reaction of [PtMe(C^N)(SMe2)] (C^N = 2-phenylpyridinate (ppy); 1a, C^N = benzo[h]quinolate, (bhq); 1b) with hydrogen peroxide gives the platinum(IV) complexes trans-[PtMe(OH)2(C^N)(H2O)] (C^N = ppy; 3a, C^N = bhq, 3b) bearing platinum-oxygen bonds. The Pt(II) complexes 1a and 1b have 5dπ(Pt)→π*(C^N) MLCT band in the visible region which is used to easily follow the kinetic of its reaction with ...

متن کامل

Redox bifunctionality in a Pt(ii) dithiolene complex of a tetrathiafulvalene diphosphine ligand.

The Pt(ii) dithiolene complex of a tetrathiafulvalene diphosphine ligand exhibits two reversible redox systems at close potentials, localized on the weakly interacting TTF (tetrathiafulvalene) and Pt(dmit) moieties.

متن کامل

Synthesis, Characterization, Luminescent Properties, And Crystal Structure Determination Of a New Platinium (IV) Complexe : trans-[Pt(4-mpy)2Cl4]

The new trans-[Pt(4-mpy)2Cl4] (1) complex (4-mpy is 4-methylpyridine) was prepared from the reaction of H2PtCl6.6H2O with 4-methylpyridine in methanol. Synthesized complex was thoroughly characterized by elemental analysis, IR and 1H-NMR spectroscopy.Elemental analysis data (C, H, N) support the general composition of the title complex and the structure have been established by single-crystal X...

متن کامل

The binding assessment with human serum albumin of novel six-coordinate Pt(IV) complexes, containing bidentate nitrogen donor/methyl ligands

The interactions between platinum complexes and human serum albumin (HSA) play crucial roles in the distribution, metabolism, and activity of platinum-based anticancer drugs. Octahedral platinum (IV) complexes represent a significant class of anticancer agents that display molecular pharmacological properties different from cisplatin. In this study, the interaction between two Pt(IV) complexes ...

متن کامل

Mechanism of O2 activation and methanol production by (di(2-pyridyl)methanesulfonate)Pt(II)Me(OH(n))((2-n)-) complex from theory with validation from experiment.

The mechanism of the (dpms)Pt(II)Me(OH(n))((2-n)-) oxidation in water to form (dpms)Pt(IV)Me(OH)2 and (dpms)Pt(IV)Me2(OH) complexes was analyzed using DFT calculations. At pH < 10, (dpms)Pt(II)Me(OH(n))((2-n)-) reacts with O2 to form a methyl Pt(IV)-OOH species with the methyl group trans to the pyridine nitrogen, which then reacts with (dpms)Pt(II)Me(OH(n))((2-n)-) to form 2 equiv of (dpms)Pt(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inorganica chimica acta

دوره 389  شماره 

صفحات  -

تاریخ انتشار 2012